Finite Element and Finite Difference Principles in Heat Conduction

heat_transfer_wei.png

This course is in the Certification in Practice of Finite Element Principles series. Students must complete three courses to earn the Certification in Practice of Finite Element Principles.

If you choose to take this course on its own it is expected you have foundational knowledge in finite element principles (e.g. linear static assumptions and element stiffness matrix, assembling a global stiffness matrix, nodal DOFs, boundary conditions, governing equations, potential energy approach, shape functions, derivation of [K], isoparametric mapping, and Jacobian). Registration priority is given to students working toward the full certificate.

Next Offering:

Start Date: August 24, 2020
End Date:  November 2, 2020

Each course offering is tied to the academic calendar; therefore, they operate with specific start and end dates. Students must complete each course during the specific time frame. Access to the online course and materials is removed when the course ends.

Course Learning Objectives

By the end of this course, students should successfully be able to:

  • Explain Fourier’s law, material properties, and boundary conditions for hear conduction.
  • Describe the underlying theory for the finite difference method.
  • Compare implicit and explicit time integration schemes.
  • Describe the Finite Element Method including elements, nodes, shape functions, and the element stiffness matrix.
  • Describe integration points and jacobian in the finite element method.
  • Construct, execute, and interpret heat conduction finite element models.

Expected Time Commitment to Complete this Course

  • Instructional material equivalent to a one semester credit hour class
  • Approximately 2 hours "in-class" work and 4-6-hours of "homework" for a total weekly time commitment of 6-8 hours. Please note, every learner is different so this is only a guideline. Some learners may need to budget more time to complete the requirements of this course.
  • Pre-recorded course lectures are available 24/7 through the university's Learning Management System, Carmen. 
  • ​Course duration: 10 weeks. 

Finite Element Software

To complete the requirements of this course students will be required to complete a project using finite element software. Before enrolling in these courses students should be able to:

  • Build a mesh from CAD geometry
  • Apply material definitions to model
  • Apply loads and boundary conditions
  • Visualize results

Students are encouraged to use the software of their choice. If FE software and/or hardware is not available to the student virtual classroom space will be provided through an agreement with the Ohio Supercomputing Center (OSC).

Prerequisites

  • A bachelor's degree in engineering or a related field is strongly recommended.
  • Software training and support is not provided.
  • Enrollees should also have a background in the following areas:

Computational Skills

  • Using computational approaches will reinforce skills required for computational engineering in a broader sense.
  • Homework problems should be solved using MATLAB, Python, or other computational tools. Octave is similar to MATLAB and is freeware.
  • Student will be asked to solve problems by generating basic scripts for homework assignments
  • Minimal previous experience will be needed

Engineering Concepts

  • Basic concepts of stress, strain, Hooke’s Law
  • Material properties such as Young’s Modulus and Poisson’s Ratio
  • Free body diagrams
  • Beam equations

Linear Algebra

  • Matrix Multiplication
  • Matrix Transpose
  • Identity Matrix

Calculus

  • Differentiation
  • Integration

Cancellations and Refunds

A full refund minus a $50 administrative fee will be made if cancellation is received one week prior to the start of the course. No refunds within one week of the course start date.

Frequently Asked Questions

Click Here to learn more about how this course is delivered 100% online!

Click here to learn about grades, reimbursement and other FAQs. 

 

 

Register

Registration is closed

Course Fee

The course fee is $1,000 Per Person*

*For additional fees organizations can customize the courses for their needs (ex: offline synchronous sessions). Contact Emily Nutwell for details (nutwell.1@osu.edu)

Contact Us

If you have questions about course content or customization options please contact:

Emily Nutwell
SIMCenter

Email: nutwell.1@osu.edu

If you have questions about registration please contact:

Darla da Cruz
Professional & Distance Education Programs

Email: eng-profed-CPFEP@osu.edu
Phone: 614-292-7153